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SUMMARY

Most of the approaches developed in the literatarelicit thea priori distribution on
Directed Acyclic Graphs (DAGSs) require a full sgmgtion of graphs. Nevertheless,
expert's prior knowledge about conditional indese relations may be weak, making
the elicitation task troublesome. This paper preseand evaluates an elicitation
procedure for DAGs which exploits prior knowledge oetwork topology. The
elicitation is suited to large Bayesian Networks (Bldad it accounts for immediate
causal link and DAG sparsity. We develop a new gBagesian score function, the P-
metric, to perform structural learning followingseore-and-search approach. We tested
our score function on two different benchmark BNsvlayying sample size and prior
belief concerning structures. Our results showetfiectiveness of the proposed method
and suggest that the use of prior information inapsathe structural learning process.
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1. Introduction

Bayesian Networks (BNs) (Jensen, 1996; Pearl, 1288)a widely used tool in

many areas of artificial intelligence and automatedsoning, because they
perform probabilistic inference through very eféiet algorithms. However, the

problem of searching the BN that best depicts #peddence relations entailed
in a database of cases is hard to solve.
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The Bayesian approach to structural learning etglalgorithms which
typically combine expert's knowledge with the imfation gathered from a
database. In particular, it assumes that a spastwaftures is defined and that
one of these structures is the true model of tloegss which led to the data
being observed. Then a prior distribution is defimeer the space of structures
and for any given structure it represents the dapdyelief about such
configuration before considering the data. Therpplus the data lead to the
posterior distribution over the space of structuggsd from a pure Bayesian
point of view the posterior distribution is the heécal goal of structural
learning.

Unfortunately the complete specification of a prigdistribution on the
topology of a Bayesian Network (BN) is NP-Hard (€karing, 1995), and most
of the approaches in the literature require a cetepspecification of a prior
probability distribution on the space of Directedyslic Graphs (DAGS).
Nevertheless, there are problem domains in whiclh semplete elicitation is
difficult or unfeasible, due to the lack of detdilenformation about network
features. A prior state of partial knowledge aleuetwork's topology may take
several forms, like independence relations amorgsets of variables or an
ordering relation for just a subset of nodes.

In this paper we develop a method to elicit pateiefs about a network's
structure without requiring tha priori complete specification of structures.
Elicited beliefs are refined by means of dissinijameasures on the network’s
topology. In order to perform structural learning a score-and-search
framework, we propose a new score function to etalwausal Bayesian
Networks: the P-metric. It is a quasi-Bayesian satained by modifying the
Bayesian Dirichlet Equivalent metric (BDe) (Heckammet al., 1994). The
characteristic of a likelihood equivalent metric tlsat it assigns the same
likelihood value to structures entailing the sam@nditional independence
assertions. The P-metric exploits prior informatit;m discriminate among
causal structures within equivalence classes,ithsisiot likelihood-equivalent.

In section 2 we briefly review some basic concept®out Bayesian
Networks. Section 3 contains a description of eapproaches to elicit prior
information on structures, and in section 4 we itletar approach. A new
elicitation procedure using the P-metric is presénn section 5. Numerical
results from the analysis of some Machine Learriergchmark datasets are
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presented in section 6. Finally, in section 7, wespnt conclusions and issues
to be addressed by further research.

2. Graphs and Bayesian networks

A review of some important definitions in graph dahe and of Markov
properties is provided. Comprehensive accountsababilistic networks may
be found in Jensen (1996) and Cowell et al. (1999).

A graph Gis an ordered paiM,E), with V a finite set of nodeé/q, W, . . .}
andE [J V xV the set of edges. Itvi,vj)DE and (vj,vi)DE then there is a
directed edge from to nodev; , also denoted ag— V.

Given (vi ,vj)D E we say thaw; andy; areadjacentor neighbourhood®f
each othery; is said to be parentof v;, andy; is also called &hild of v;. By
iterating the two definitions of parent and chigtursively, the set aincestor
nodes anddescendannodes are defined. An ancestral sebf nodea is a
subset ofV in which for each node i all its parents are i\ as well. The
smallest ancestral set containing a nedeindicated ag\n(a). A node is called
aroot if it does not have any parent.

For everyv, OV it holds that(v,v; JOE because a node cannot originate
an arrow pointing to itself. I(vi Vi )D E and (vj Vi )D E then the edge is said to
be undirected.

A directed graph G contains only directed edges(vi Vi )DE
= (vj Vi )D E.

A path connecting two nodes whatever the directibeadges on the path is
called anadjacency pattor chain to distinguish it from thelirected path, dp,
where edges are all oriented in the same directienedges meet head-to-tail
for each node. Mirected Acyclic Graph (DAG) &= (V,Ep) is a directed graph
without cycles, i.e. no directed path originatedvpleads back to the starting
nodev,.

A Bayesian NetworlB is a graph-based representation of a joint proivabil
distributionP which is Markov with respect to the graph. Randariables are
labelled by nodes in the graph, ex;. with state spacey, . For shortness,
labels also sometimes indicate random variableghi paper we will only
consider discrete random variables.
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The Markov property allows the factorization of tf@nt probability
distribution following the child-to-parents structu

p(X) = VE\/ p(xvi | Xpaly; )) (1)

It follows that the joint probability distributiomay be represented by a
collection of conditional probability tables (CPT®)e for every pairv, pav))
in the graph, witlpa(v;) the parent nodes &f To every paiv;,, pav;) of a given
network Bs is associated a CPT whose parameters are hereatedias
sy pa(v): Given the structures, the vector of all parameters is
O :{Jes,v.,pa(v. )}

A graph Gp does not always represent all the conditional iedepnce
relations entailed by the probability distributiBnlf it does, we say thd& and
Gp arefaithful to each other. The conditional independence reiatihich are
not determined by “numerical accident” may be repreed by a DAG. In a
faithful DAG all the conditional independence raas by a BN are revealed by
assessing thdirection-dependent separatigmoperty (Geiger and Pearl, 1988),
also calledd-separationPearl, 1988).

Given a DAGGp = (V,E), with (vi WV )DV andv; #V,, letC be a subset of
Vv, cav \{vi ,vj}. We say that; andy; ared-separatedn Gp givenC, if and
only if there exists no adjacency path betweernv; andy, such that: (1) every
collider onapis in C or has a descendant@ (2) no other node on pa#p is
in C.

The subseC is the so-callecut-set If v; andv, are not separated giveD)
we say that; andy, ared-connectedjiven C. The definition of d-separation of
two nodes can be easily extended to the d-separafidwo disjoint sets of
nodesX OV andY OV by iterating the above definition for each pbjir,vj )
with v; X 'andv; Y.

3. Earlier approaches to using prior information on stuctures in
learning Bayesian Networks

In this section we provide a brief overview of thesting approaches to
including prior information in BN structural leang. It should be noted that the
elicitation problem for prior beliefs on a netwalstructure has been not much
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considered in the literature, where relativelydithittention has been paid to the
elicitation of beliefs about structures (Friedma &oller, 2003).

A straightforward elicitation of prior beliefs onomplex structures is
performed element-by-element, assigning (subjectpebability values to
graphs defined on a given s¥t of nodes. The enumerative approach is
unfeasible except in networks with a very smallcfatodes, because the space
of DAGs has superexponential cardinality as the memof nodes inV
increases.

A simpler approach puts a uniform prior distribation a subsel of all
possible DAGs (Heckerman et al., 1994; Srinivaalgt1990), therefore some
structures arex priori excluded from the scoring procedure. Bounds on some
structural features are established to set hardt@nts on elements id. For
example a variable can be declared to be a robtiede or the parent of
another. In addition constraints on the numberasepts/children or on partial
order between variables can be set. This approashbken applied in both
Bayesian and non-Bayesian learning approaches.

Two more elaborate approaches have been proposddutmne (1991),
Chickering (1995), and Madingan and Raftery (19%d) define a prior
distribution on the space of BN structures. Bothttefm require a complete
specification of beliefs over the network, makihgit implementation not very
practical in large networks.

In the so-called Buntine approach (Buntine, 198m),nitial partial theory
provided by the expert is transformed into a pgaybability over the space of
theories. The partial theory consists of: (1) altotdering< on variables, such
that if nodey is in the set of parents of nogé¢hen y < X in the relation set; (2)

a full specification of beliefs for each edge i ttirected graph, measured in
units of subjective probability.

The joint prior distribution conditioned on theabbrdering of variables is
defined by assuming the independence of parents. S¢te joint prior
probability distribution is factorized as:

p(Bs )= ]l 1.¢) @

By expanding the generic terp(7z |<,&), we have:
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p(7z 1<.€)= 1 ply - % Hf){ M1-p(m |<,<‘)] 3)

yurg yurg

In the approach proposed by Heckerman et al. (188)expert builds a
completea priori network, Bs. (s for structure andt for complete), and the
conditional probability of the next case to be séarservation on a statistical
unit) is defined. The joint probability distributicon the domaiJ of random
variables is obtained at this purposp(u | Bsc, E) whereBg. is the complete
network. Informative prior distributions for modphrameters are built in a
peculiar way to obtain the so called Bayesian BRlat Equivalent metric (BDe
metric).

The prior distribution on BN structures is independ from the prior
network, Bs, but in their approach, structures closely resemgbthe prior
network receive a high prior probability, while ete are penalized. The
number of nodes in the symmetric differencepfBs ) and 7z (Bsc) is:

& =I{m (Bs) O 1 (Bsc )\ {m (Bs) n 1 (Bsc )} 4)

It follows that the number of different arédetween the prior networBsc
and a networlBs is 5:2{‘:15, . By introducing the constant¥ k<1, the
prior distribution penalizing networks not muchsdao thea priori network is

p(Bs |, Bsc)=ck® %)

wherec is a normalization constant.

Finally, the method proposed by Madigan and Raf{@884) is similar to
the approach used by Heckerman et al. (1994),thsitcoarser in avoiding the
elicitation of a large number of arc probabilityjuas. An arc elicited in one or
more DAGs is associated to a constant probabibityier which is higher than
the value for arcs that do not belong to any @leiDAG. Lete =€, [ e, denote
the set of all possible links, wheg, is the set of links which are present in the
model andg, is the set of absent links; they assume that tigeage in favour
of an included link corresponds to a prior link Ipability for all el e, of

p(e)= (1+ exp{o'-;zoRD_l

and, similarly, the prior link probabilities fa@&[] £, are given by:
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p(e)= ex;{LZORj [E1+ EX{OL;ZORJJ -1

where the parametefS, and Oy are set by the users and their effect is to
determine the prior bias in favour of arcs incluédethe model provided by the
users.

4. From prior information to score functions

The specification of a complete prior network witbliefs over all possible
edges is unrealistic for large networks. The dtwih of expert's prior
information element by element is performed throute assignment of
(subjective) probability values to all possiblecavs of a Bayesian Network, as
in Buntine (1991), but it becomes very difficultedtio the superexponential
cardinality of the space of structures as the nurobeodes increases. In large
networks, a coherent and complete specificatioa pfior distribution on the
space of networks (Chickering et al., 1994), wosktkm to be extremely
difficult.

In this section a score functioB,i.(Bs), mirroring prior beliefs, is defined
to drive score-and-search algorithms for structleaining. It requires far less
elicitation of prior beliefs from the expert tham Buntine (1991) and
Heckerman et al. (1994).

Expert’'s prior information on a large problem domanay be strong but
partial, for example it may deal with the orierdatiof some edges over
hundreds, or with global network traits like theesiof the graph. In gene
expression analysis, for example, a small degregraph connectivity i
priori expected and substantial knowledge may concerpdrtél ordering of
ten out of thousands of genes. In order to fullple the a priori structural
information both local and global features havéeaaken into account. In our
approach the expert is expected to express: (18fbaver some, but not all,
possible edges of the network; (2) beliefs over esdeatures of the network
topology, like the expected number of node parentthe degree of network
connectivity.
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Given these assumptions, we propose to elicitath@riori belief on the
structure of a candidate netwoBg by means of a score functio®io(Bs)
capturing local and global network features:

Sorior (Bs) =f (Sg(Bs)’ S; (Bs))

The score componerﬂ;g(BS) refers to edges elicited one at a time. The
second score componeB}T)(BS), describes global network features, related to
DAG connectivity.

4.1. Encoding local features

The score componerS,f(BS) encodes the expert’s beligbn the presence of
oriented edges, each one marginally considered.

The DAG’s structure is specified by the subdget 1 V xV. We
conventionally indicate a pair of nodes, {1) in the canonical order< j, and
we use the deponenj to refer to the edge between nodeandy; . A structure
is more parsimoniously represented by a colledtloof F < n(n—1)/2 variables
M={ms, ... m, ... ,m} each one taking values gr={- 1, 0, 1} for each pair
of nodesV;, v),i<j,inV.

The respective values in are indicated by: an arrow < j, no arrow
between andj, and an arrow — j. Expert's belief takes the form of a set of
probability distributions over the collectiav :ip(xmf |E}: m¢ O M}.

The distributions over the collectidvi are coded as vectors of probability
values F?_Tj =(pi_j,_1, Bi.jo g_j,ﬂ), so that IP;; = 1, where the valug;-,
represents, for instance, the probability assidnethe expert to the presence of
the arrowi « j.

For each pairg j, connectivity vector€;; = (lij-1, lijo lij+1) are introduced
to indicate the value taken by variables, wHerg = 1 if the arrowi < j exists
and 0 otherwise. It follows thairCLi.j = 1. The probability value associated to the
oriented edge for a pair jis CiTj Rj-

The above construction leads to the specificatidn ao probability
distribution on the set of directed grapBiss in which the candidate directed
graphBp has a prior probability value equal to:

P(Bp €)= N CiR |
.1}
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The above factorization refers to our prior judgtmabout the existence of a
link betweenv; andv; without considering other nodes.

The space of DAGs is contained in the space of dice Graphs,
Gp OGpg., therefore the above construction also inducesrabgbility
distribution over DAGs contained in the space oéclied graphsBg 0Gpg:

P(Bs &)1 DAG(BS)D{H}QT,- R.j (6)
i.]

with 1pag(Bs) taking the value one iBs is a DAG, zero otherwise. The
proportionality is due to an omitted constant delbeg on directed graphs
which are not DAGs because of cycles. We remarkftben a theoretical point
of view there is no difficulty in calculating theale of the normalization
constant, but given the huge cardinality of spask®irected Graphs the
computation may not be practical.

We define the scor§y(Bs) of a candidate Bayesian Networks using (6):

%(Bs)=log(%J @)

with P({Q} |0) the prior probability assigned to the Bayesiarwek in which

E is empty (graphs without edges). By straightforwalgkbra it may be shown
that computation of the normalization constarg not needed in order to search
in the space of networks. In fact, omittiigor simplicity, let Pgp(Bs) be the
probability distribution over DAGs anlspc(B®) be the probability distribution
over the space of Directed Graphs. By straightfodwadgebra, and deleting
from the notation for simplicity, we have:

(Bs)

SB(BS) = |OQ[IIZZD—OJ = |09(PGD (Bs))— IOg(PGD ({O})) =
= l0g(chba (Bs)) ~ loa(cRoe (0}) =

= log(c) + log(Pog (Bs)) - log(c) - log(cRya ({0})) =

_ . Poc(B )J_ NésGhR;
=] TDG\PS/ = L A
%%M)mﬁ%mj

where 1Bs CiT_j R.j and |‘|{°}CiT_j R.; refer to factorization of the prior judgment
respectively over the candidate netwBikand to the empty structure.
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A remarkable property of the sco&(Bs) in equation (7) concerns the
possibility of calculating scores by just considgrthe pair of nodes for which
the expert defined a distribution. LEtbe the number of pairs of nodes for
which the belief has been elicited by the assignmei a distribution
ipkxmf |E): f :L...,F} and letk be the constant values assigned to Ehe
-n(n-1)/2 cases for which no belief has been elicited. &wor given structure
Bs we have:

P(Bs)=MC"iR; = 0k
(S) MG.R. {i.jl}_|DF p(xmf){i.jl}_lmF

and by straightforward algebra we have:

Bs
el o U |
S5(Bs) =log A0 log T
{i jI?IZIF p(xmf jD{i.jIIIEIE

with constantsk cancelled out. It follows that the number of opers to
calculateSy(Bs) is equal to B + 2.

4.2. Encoding global features

Partial prior beliefs regarding network topology yntake the form of an
expected degree of connectivity, for example if éxpert has clues about the
expected number of parents/children per node. fre gxpression analysis, the
regulation of one gene is expected to depend aawaother genes, although
cases of regulation over many different metabolthways are known. The
score componenS,’D(BS) captures this class of beliefs about the topolofgst
candidate network.

In a constructional approach the topology of anoden networkB;g is
encoded into a x n connectivity matrixC,, (Larrafiaga and Poza, 1996), whose
element, jis 1if v, I pa(vi), zero otherwise. The matr; is one-to-one with
E, therefore it contains the entire structural infation. Variablesxy (Bs),
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f=1,2, ... are built to capture global network features, sashthe mean
cardinality of parent sets, the DAG size, the numifev-structures appearing
on a directed path, and the size of a directed gathnding in a node which
belongs to the maximal directed pai,a

We consider here variabl¢sy , . . . , . defined to count the number of
parents for each; LV :
. =XG i = i) |
Xg; % i vi%\llpa(VI) | (8)
Further variablesgn1, . . ., %n count the number of children ich, for
eachv, JV :
Xgnu :Zilci. j :vi%\ll(:h(\/i)l )

The approach adopted here to depict prior beliefaianetwork topology is
based on a reference distributi@. representing expert's belief about the
fraction of total nodes bearing a given numberarepts, (01, . . ) and on the
distribution Py, s Of relative frequencies calculated on the candidet®vork.
The support oPis x ={0, 1, 2, . . ., n-1}. Whenever elicitation of the proba-
bility distribution on the canonical sample spaf¢he auxiliary variable is
beyond the expert’s ability, a partitioning pinto a coarser grid of values is
performed before elicitation.

The distributionP,,sis compared tdQ,, and the degree of dissimilarity
enters in the score function. THellback-Leiblerdivergence is here adopted to
assess the degree of dissimilarity among the atlistébutions:

Ppa(X)

KL(Poa Il Qpa) = z Ppa(x)log(mJ (10)

Note that theKullback-Leiberdivergence is not symmetrical and is equal to
0 if and only if Q,, = P,,. A small value of the distance KL means that the
candidate network has a structure close toahgriori belief as regards the
connectivity.

The score compone®(B) is defined as a function of the Kullback-Leibler
divergence:

S;(Bs) = (- KL(Ppall Qpa)) (11)
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Given P,, and Qp, andj being the number of elements in the partition, the
computation o5(B;) takes 3 + 1 operations.

4.3. Score function and calibration

We propose a score function defined by the conwmbination of equations
(7) and (11):

Sprior (BS):aSg(BS)'*'(l_a)SB(BS) (12)

withO < g <1. By substitution, we have:

Spnor(Bs)=alog['3|§{80§)j+(1— a)(- KL(Prall Qpa) (13

The role ofa is to balance the strength of the components duedge
orientation and the strength due to network toppldgvaluea = 1 is suited to
the lack of specific prior beliefs on network topgy. Without data the best
priori structure maximizes (13), which is convenientlyrefulated as:

Sprior(BS):.ogl(@J“ ol i) "

P{0}

5. The P-metric

Structural learning of BNs may be performed usimg score function (14) in a
Bayesian-inspired metric, calleB-metric which mixes prior beliefs and
experimental information following Heckerman et(@994). The BDe metric is
peculiar in assigning the same likelihood value stouctures which are
likelihood equivalent, i.e. DAGs encoding the saassertions on conditional
independence relations. The equivalence is obtaibgd estimating the
parameters through a prior procedure in which DIgt hyperparameters are
defined using the notion of equivalent sample size.

The BDe function defined by Heckerman et al. (1994)y be used in both
causal and acausal networks.

In order to work with acausal networks, the scageialence condition
must be fulfilled. Nevertheless, a prior equivalscbre is needed to obtain
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a score equivalent metric. Neither the prior fumttproposed in Heckerman et
al. (1994) norS,(Bs) are prior equivalent functions, therefore the posed
P-metric is better recommended for learning caBagksian networks.

The Rmetric inherits from the BDe function all the asglions described
in Heckerman et al. (1994): (1) the database adsiass a multinomial sample
from a Bayesian Network with parametérg2) missing data are not allowed;
(3) the structurd3s defines the number of CPTs needed, each CPT wsitbwnh
parameterd; (4) parameters for each CPT are independent;gi&n two
networksB,; andB, with p(B, | &) > 0 andp(B; | &) > 0, if they are equivalent,
then they have the same likelihood value; as shawr(11l), these five
assumptions imply that the prior distribution oyparameters of each CPT is
Dirichlet (Cooper and Herskovitz, 1992).

We propose the-Retric below to assess the score of a candidatetste
Bs, given a complete database of ceBes

SP.metric(BS) = Sp(BS)'BZ |:PBDe(D | BS’B) (15)
and on the log scale it may be rewritten as:
log(SP.metric(BS)) = IBZ [I]Og(sp(BS))+ Iog(l:)BDe(D | BS'H)) (16)

The parametef, is introduced to calibrate the score so that thength of
the a priori component is balanced against the contributionthef BDe
component. The numerical choice ffis related to the size of node 8t to
the sample size of cases in the database but@l$® tstrength of the elicited
beliefs. We propose to define an omnibus-defadliesdéor $, that is based on
indirect assessment of the aforementioned relatignsiakings, depend on a
function of the prior score and data likelihoodtbé empty DAG through a
user-selected valuawhich sets the relevance of prior belief:

_, 100(R,,(D 1{0}.6)
p=2r jog(S, (o))

(17)

with 0< z<1. Clearly ifz= 0 thens, = 0 and the Pnetric is equal to the BDe
metric when uniform prior distribution over structa is assumed. The role of
is to set the importance of the prior score withpext to the BDe likelihood
function.
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Normalized prior would set a probabilistically cofet calibration in which
the likelihood function reshapes prior beliefs.

The Rmetric makes it easy to quantify beliefs taking foem of both
global network features and (marginal) causal &sssr concerning pairs of
variables. The joint use of the prior sc@&¢Bs) and of the BDe likelihood
enables the detection of score differences in digudigtinct structures, even if
they would be collapsed into the same equivaletassdyy using a uniform
prior distribution over structures. As shown in temt 3, although several
methods are available to define prior distributionsstructures (Buntine, 1991;
Heckerman et al. ,199485,(Bs) makes the elicitation easy even in large
networks.

Numerical investigations in benchmark case studigggest that the-P
metric is a valuable tool for large and structudednains, like gene expression
studies. Note that the proposed approach is omelstgond the use of hard
constraints, which may cause a loss of informadiot even a biased elicitation.

6. Results

We implemented the-Betric on top of the MASTINO package (Mascherini,
2006), coded in th& environment (lhaka and Gentleman, 1996), and built
the top of the library DEAL (Bgttcher and Dethlefs003). MASTINO is a
suite of R functions, which includes several algorithms torme@ayesian
Networks.

The package MASTINO can be freely downloaded frdme website
http://statind.jrc.it/mastino.

We numerically investigated the P-metric by meahsgwwo benchmark
datasets which are often referred to in the madeiaming literature. One is the
famous ASIA network (Lauritzen and Spiegehalter88)9and the other is a
subnetwork from the Hepatic Glucose Homeostasisorét (Le et a.,2004).
They are both discrete networks of respectivelp® 20 variables.

We used the Iterated Hill Climbing with Random Rest (IHC)
(Chickering et al., 1995) as heuristic search astpatand we ran the learning
algorithm over three different samples of 500, 158000 observations. We
tested the fnetric for different combinations of parametezs! 3, and a.
Finally, we compared our approach against threeradlyorithms: the PC and
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NPC algorithm (Spirtes et al., 2000; Steck, 200fhplemented in HUGIN, and
with the BDe metric (Heckerman et al. ,1994), aiging the ICH as search
algorithm.

6.1. The ASIA network

Asia is a small fictitious Bayesian network (Lameih and Spiegehalter, 1988),
to calculate the probability of a patient havindpdrculosis, lung cancer or
bronchitis given values taken by some other vaemblike “visit-to-Asia”,
which is equal to 1 if the patient recently visitesia.

All variables in this network are binary. The ASi&twork is implemented
in the software HUGIN (Andreassen et al., 1989)iciiis also used to generate
the database of cases. The problem domain hereits Kch: shortness-of-
breath, dyspnoea (D), may be due to different factce. tuberculosis (T), lung
cancer (L), bronchitis (B). Then a recent visitAsia (A) increases the risk of
tuberculosis, while smoking (S) is known to besk factor for both lung cancer
and bronchitis. Results of a single chest x-ray @&)not discriminate between
lung cancer and tuberculosis (E), and neither doegpresence or absence of
dyspnoea.

The above prior information was supposed to beigdgrtquantified by
experts concerning three pairs of nodés:T), (S, L) and (, T). In particular, in
the adopted expert domain, the node “Tuberculd3isivas not reputed to have
any effect on “Visiting Asia” (A), so the probalbjliof the evenA «— T was set
to be equal to .01; then, “Smoking” (S) was believed to have areffon
“Lung Cancer” (L) but “Lung Cancer” did not haveyaeffect on “Smoking”.
The probability of those events was seP{8& — L) = 0.6 andP(S«— L) = 001
respectively. Finally, no effects between “Lung €ari and “Tuberculosis” (T)
were believed to exist, so the probability of there L < T was set equal to
0.8. The uniform distribution was used to compldte probability vectors
referred to the pairs of nodes listed above. Asugg the network topology, it
was set that 80% of network nodes have at mosparent.

The elicited prior belief was used to build an amgte of the P-metric. The
structural learning algorithm was repeatedly rurntifimee different sample sizes,
respectively of 500, 1500 and 3000 cases. Reveasesi entailing the same
equivalent structures were considered as correstens.
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In order to assess the sensitivity of the P-matrithe input parameters, the
algorithm’s behaviour was evaluated with differentnbinations of parameter
values forz anda. The parametez was set to take values from the gfidll,
0.25, 0.5}, where the higher the value nfthe stronger is the role of the prior
information in the proposed metric. Furthermoreapagtera takes values from
the set{0.25, 0.5, 0.75}, where the higher the value af the stronger is the
effect of prior information on local features. When= 1 the effect of prior
information on global features is null. For eacimpke we performed the
learning process for all possible combinationg afido:.

Results of sensitivity analysis on the calibratpgrameters are shown in
Table 1, in which the robustness of the P-metrigvislent, and it suggests that
when the sample size is increased the algorithmldvbod the best network
even with a smaller contribution of prior informatj i.e. smaller values &
Furthermore, for each value afbetter performances are reached for higher
values ofa, implying that the contribution of prior informati on local features
is apparently more important than the contributtbglobal features. Given the
small size of the network this behaviour was exgbct

The comparison between the ASIA network and theaenked by means of
the RPmetric, the PC algorithm, the NPC algorithm and Bige score was
performed in terms of number of correctly/incorhectearned arcs. The
comparison of P-metric with other algorithms is whoin Table 2. For the
P-metric we reported the worst and the best pedoo®a obtained under
different configurations of the calibrating paraerst

Overall the P-metric performed very well by compan with other well-
known learning algorithms. Our results suggest e utility of the search
for optimal structures based on our P-metric. let,fé is important to notice
that for all the considered samples the overalloperances of the P-metric are
better than those of all the other algorithms. &hple size of 500 observations,
the worst performance of our score functisnequal to the performances of
other algorithms as regards the number of corréss$ing arcs. Nevertheless the
P-metric can be anyway considered superior, sindeds not add incorrect arcs
to the optimal networks. At other sample sizes wbest performance of the P-
metric is also better than the performances of rothlgorithms which
maintained similar performances at each sample $izgarticular, for the
smallest sample size, in the best case the P-ndittovered 6 arcs out of 8



Bayesian Networks and expert’s prior information 145

(4 arcs in the worst case), compared with 4 arcstife BDe, NPC and PC
algorithms. With a sample size of 1500 observatidhe P-metric correctly
identified 7 arcs in the best case (6 arcs in thesivcase) compared with 5 arcs

Table 1.ASIA network: P-metric performances under differeombinations
of parameters.

Sample z a Correct Incorrect Missing
500 0.10 0.25 4 0 4
0.50 4 0 4
0.75 5 0 3
1 5 0 3
0.25 0.25 4 0 4
0.50 4 0 4
0.75 5 0 3
1 6 0 2
0.50 0.25 4 0 4
0.50 5 0 3
0.75 6 0 2
1 6 0 2
1500 0.10 0.25 5 0 3
0.50 5 0 3
0.75 6 0 2
1 7 0 1
0.25 0.25 5 0 3
0.50 6 0 2
0.75 6 0 2
1 7 0 1
0.50 0.25 6 0 2
0.50 6 0 2
0.75 7 0 1
1 7 0 1
3000 0.10 0.25 5 0 3
0.50 6 0 2
0.75 6 0 2
1 7 0 1
0.25 0.25 5 0 3
0.50 6 0 2
0.75 7 0 1
1 7 0 1
0.50 0.25 6 0 2
0.50 6 0 2
0.75 7 0 1
1 7 0 1
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Table 2.Comparison of the algorithms’ performances forAl$A network,
where P-metritand P-metritrepresent the worst and best P-metric
performance respectively .

Sample Algorithm Correct Arcs Missing Incorrect Add

500 PC 4 4 2
NPC 4 4 1
Bde 4 4 1
P-metric¢ 4 4 0
P-metrié 6 2 0
1500 PC 5 3 0
NPC 5 3 1
Bde 5 3 2
P-metri¢ 6 2 0
P-metrié 7 1 0
3000 PC 5 3 1
NPC 5 3 2
Bde 6 2 2
P-metric¢ 6 2 0
P-metrié 7 1 0

for the other algorithms. Finally, for the largesimple size, the P-metric again
discovered 7 arcs (6 arcs in the worst case) cagdpaith 6 arcs for BDe and 5
arcs for the PC and NPC algorithms.

Although the performances of all the algorithms iayed with increasing
sample size, it is important to emphasize the roless shown by the P-metric,
which — whatever the sample size and the combimaticalibrating parameters
— always obtained better networks than those bwyilthe PC, NPC and BDe

algorithms.

6.2. The Hepatic Glucose Homeostasis network:
A case study in functional genomics

The performances of the P-metric were assesseedoyihg the structure of the
Hepatic Glucose Homeostasis network (HGH) (Le, 2004e HGH depicts a
model for the genetic network controlling glucosetafolism in perinatal
hepatocyte, where specific focus is placed on ffects of insulin, glucagon
and glucocorticoid hormones. In addition, sevemigcription factors known to
be important in controlling the expression of kegngs are also thoroughly

incorporated in the model.
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The interactions between the hormones signallinthweys and liver-
specific transcription factors define the genetetwork that controls the
expression of genes maintaining glucose homeostadlie liver. Each gene is
modelled here as a node, for a total of 35 nodeseémetwork. In the original
HGH network a directed edge from a parent node thildl is added to the
network when a published resource indicates thafptirent gene has a direct
effect on the transcription process of the childegdn the HGH network a total
of 52 modelled regulatory interactions are added.d at al. (2004) the data are
randomly generated using the HGH network, as itld/dae obtained from
experiments involving microarrays.

The HGH network is formed by 20 genes and 33 reguyanteractions,
because this is the size of the problem domairuohwjor interest, and to keep
the computational burden to a reasonable size. aloption of a simplified
version of the HGH network is also justified by theits imposed by the
implementation of multidimensional arrays in R, remtly quite limited, on
which the package MASTINO is based.

Prior information takes the form of a plausible ti@grorder on a few
variables and high levels of network sparsity. Faityy we place high
plausibility on the event that insulin, glucagondagiucocorticoid hormones
(respectively IPA, CPA and GPA) preceded AC3, GBH, and TAT. The
probability of the eveniPA,CPA,GPA}— {AC3,G6P, IP1, TAT}was set equal
to 0.50 for each pair of nodes. As regards the odviopology of the HGH
network, we quantified our belief about sparsititisg the cardinality opa(v;)
of each nodev, L1V to a fairly small value, more precisely 80% of nodee
expected to receive less than 3 incoming arrows.

We tested the P-metric at 3 different sample s&@8, 150 and 3000, using
different combinations of parametexsand a. Data were simulated using the
software HUGIN (Andreassen et al., 1989), followthg same approach of Le
et al. (2004), in which data were simulated usimg BNet toolbox (Murphy,
2001). Analysis of the algorithm’s sensitivity tbaice of parameter values was
performed by running the algorithm on the aforenmertd grid of values foz
anda described in the ASIA case study. For each sampéevge performed the
learning process for all possible combinationg afido:.

Results of the sensitivity analysis are shown ibl&a3, in which the
robustness of the proposed approach for the HGWanktis also evident at all
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sample sizes. The difference between the besthand/orst network is always
limited to the orientation of just one arc. Resutso suggest that the best
network is also found if the contribution of theégprinformation is set to be
small, i.e. a smaller value & whatever the sample size. It is interesting to
notice that, in contrast with the result obtained the ASIA network, in this
case study for each value pfbetter performances are reached with smaller
values ofa. This result implies that for the HGH network tbentribution of
prior information on network topology is more imgant than the contribution
of local features.

The comparison of the P-metric with other learratgprithms again shows
the overall good performances of the proposed metecause at all sample
sizes the performances of therfetric were always equal to or better than those
shown by other algorithms. The results in Tableeveal that at the smallest
sample size, the performance of the proposed ssocemparable with that
obtained with the NPC and PC algorithms, which tb@d and 19 correct arcs
respectively. The P-metric outperformed the BDe rimetwhich found 12
correct arcs while the P-metric found 22 correcexs (21 in the worst case).
At a size of 1500 observations, our metric agaitp@dorms all the other
algorithms by correctly identifying 25 arcs in thest case (24 arcs in the worst
case) compared with 22 and 21 arcs for NPC andeBgectively, and 18 arcs
for the BDe metric. Finally, at the largest samgilee, the P-metric discovered
28 arcs (27 arcs in the worst case), achievingndasi performance to PC and
NPC and again outperforming BDe, which found 24arc

7. Conclusions

In this paper we have defined a new Bayesian-iadpscore function,
called P-metric, to learn the structure of netwarqsresenting causal relations
among variables. The metric component dealing wttluctural information
takes account of marginal causal beliefs conceraimg and global network
features without requiring the elicitation of a quete network (Buntine, 1991;
Heckerman et al., 1994). The likelihood componsriidsed on the BDe metric,
thus it exploits the characteristics of the lattghich are well reported in the
literature.
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The BDe metric does not distinguish structuresilmgathe same condi-
tionnal independence assertions, but our scoretiimenakes it possible to
discriminate structures belonging to the sameililoeld equivalence class using

Table 3.HGH network: P-metric performances under differ@rnbinations of

parameters.

Sample z a Correct Incorrect Missing
500 0.10 0.25 22 1 11
0.50 21 1 12

0.75 21 1 12

1 21 1 12

0.25 0.25 22 1 11

0.50 22 1 11

0.75 21 1 12

1 21 2 12

0.50 0.25 22 1 11

0.50 22 1 11

0.75 21 1 12

1 21 2 12

1500 0.10 0.25 25 1 8
0.50 25 1 8

0.75 25 1 8

1 24 1 9

0.25 0.25 25 1 8

0.50 25 1 8

0.75 24 1 9

1 24 2 9

0.50 0.25 25 1 8

0.50 25 1 8

0.75 24 1 9

1 24 2 9

3000 0.10 0.25 28 1 5
0.50 28 1 5

0.75 27 1 6

1 27 1 6

0.25 0.25 28 1 5

0.50 28 1 5

0.75 27 1 6

1 27 1 6

0.50 0.25 28 1 5

0.50 27 1 6

0.75 27 1 6

1 27 1 6
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Table 4.Comparison of the algorithms’ performance for ti@HHnetwork,
where P-metritand P-metritrepresent the worst and best P-metric

performance.
Sample Algorithm Correct Arcs Missing Incorrect Add
500 PC 19 11 3
NPC 21 10 2
Bde 12 21 1
P-metri¢ 21 11 2
P-metrié 22 10 1
1500 PC 21 10 3
NPC 22 10 2
Bde 18 15 1
P-metri¢ 24 8 1
P-metrié 25 8 0
3000 PC 27 2 5
NPC 27 3 5
Bde 24 9 5
P-metri¢ 27 6 1
P-metrié 28 5 1

the elicited causal information. The BDe metric nmey used to learn causal
networks (Heckerman et al., 1994) and oum@&tric extends its flexibility.

Performances of the-metric were tested under two different Machine
Learning benchmark datasets, varying the sampée aizl the structural prior.
The sensitivity analysis of the P-metric was pemed by testing several
combinations of calibrating parameters. The resulése compared against
three well-known learning algorithms: the PC alton (Spirtes et al., 2000),
the NPC algorithm (Steck, 1990) and the BDe mdtiieckerman et al., 1994).
Successful numerical findings prove the effectigsnef the P-metric, which
achieved performances always equal to or bettar thase shown by other
algorithms for both the benchmark BNs and at a# #$ample sizes. In
particular, it is important to notice that our se@ways outperforms the BDe
(i.e. the P-metric when the parameteris set equal to 0), showing the
importance of the prior information in the performa of BNs learning
algorithms. Moreover, sensitivity analysis alsoftiights the overall robustness
of the proposed metric, demonstrating the limitdo¢ of the input parameters
on the score function.

The P-metric is not highly demanding as regards dli@tation of prior
information, therefore it could be very useful i@rde problem domains in
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which substantial but partial information is avhll like gene expression
studies. In this paper results from the case stuti®ve clearly shown the
outstanding impact that prior information may havemproving the learning
process. For the omnibus calibration we proposex,gne parametez, besides
the elicited quantities needs to be set in ordeslttain a working algorithm.
More work is needed to improve the algorithm’s lwation for specific
problem domains; bootstrapping the omnibus settiigit be a good start.

Search under P-metric may stop at a local maximiike, other greedy
search algorithms, therefore population based igos (Larrafiaga and Poza,
1996; , Mascherini and Stefanini, 2005, Pelikanaét 1999), might be
considered as a useful alternative reducing thebglhitity of premature
convergence. Future work might deal with the dgw@lent of elicitation aids
about local features on a grid of values (Jeffré@§1). Sensitivity analysis on
the elicited values would also be useful.
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